Deterministic event-based simulation of quantum phenomena

نویسندگان

  • Koen De Raedt
  • Hans De Raedt
  • Kristel Michielsen
چکیده

We propose and analyse simple deterministic algorithms that can be used to construct machines that have primitive learning capabilities. We demonstrate that locally connected networks of these machines can be used to perform blind classification on an event-by-event basis, without storing the information of the individual events. We also demonstrate that properly designed networks of these machines exhibit behavior that is usually only attributed to quantum systems. We present networks that simulate quantum interference on an event-by-event basis. In particular we show that by using simple geometry and the learning capabilities of the machines it is possible to simulate single-photon interference in a Mach-Zehnder interferometer. The interference pattern generated by the network of deterministic learning machines is in perfect agreement with the quantum theoretical result for the single-photon Mach-Zehnder interferometer. To illustrate that networks of these machines are indeed capable of simulating quantum interference we simulate, event-by-event, a setup involving two chained Mach-Zehnder interferometers, and demonstrate that also in this case the simulation results agree with quantum theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient data processing and quantum phenomena: Single-particle systems

We study the relation between the acquisition and analysis of data and quantum theory using a probabilistic and deterministic model for photon polarizers. We introduce criteria for efficient processing of data and then use these criteria to demonstrate that efficient processing of the data contained in single events is equivalent to the observation that Malus’ law holds. A strictly deterministi...

متن کامل

Comparing Geostatistical Seismic Inversion Based on Spectral Simulation with Deterministic Inversion: A Case Study

Seismic inversion is a method that extracts acoustic impedance data from the seismic traces. Source wavelets are band-limited, and thus seismic traces do not contain low and high frequency information. Therefore, there is a serious problem when the deterministic seismic inversion is applied to real data and the result of deterministic inversion is smooth. Low frequency component is obtained fro...

متن کامل

A Novel Design of a Multi-layer 2:4 Decoder using Quantum- Dot Cellular Automata

The quantum-dot cellular automata (QCA) is considered as an alternative tocomplementary metal oxide semiconductor (CMOS) technology based on physicalphenomena like Coulomb interaction to overcome the physical limitations of thistechnology. The decoder is one of the important components in digital circuits, whichcan be used in more comprehensive circuits such as full adde...

متن کامل

Design of a new asymmetric waveguide in InP-Based multi-quantum well laser

Today, electron leakage in InP-based separate confinement laser diode has a serious effect on device performance. Control of electron leakage current is the aim of many studies in semiconductor laser industry. In this study, for the first time, a new asymmetric waveguide structure with n-interlayer for a 1.325 μm InP-based laser diode with InGaAsP multi-quantum well is proposed and theoreticall...

متن کامل

Simulation and Design of an Organic Quantum Film Electrooptic Switch

In this paper the simulation and design of a quantum-film electro-optic switch is considered. This photonic device, is made from a new organic dipolar material called MNA or 2-methyl-4 nitroaniline, which possesses a high merit in comparison with it's inorganic counterparts (e.g. LiNbO3, GaAs, InSb, Quartz, etc). Montecarlo method is used to simulate the photon-it-electron interaction in this m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Physics Communications

دوره 171  شماره 

صفحات  -

تاریخ انتشار 2005